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Abstract

This paper proposes a new output feedback model reference adaptive control (MRAC) method for discrete-time linear time-
invariant systems with arbitrary relative degrees. The proposed method does not require any prior knowledge of the high-
frequency gain represented by kp, thereby completely eliminating the common design condition in the traditional discrete-time
MRAC framework: the sign of kp is known, as well as an upper bound on |kp|. Specifically, an output feedback adaptive control
law is developed, which incorporates a time-varying gain function to effectively address the singularity issue. The developed
adaptive control law leads to the derivation of a linear estimation error equation for the closed-loop system. Consequently,
a gradient algorithm based parameter update law is directly formulated by utilizing the estimation error and some other
available signals without requiring any prior knowledge of kp. In comparison to the traditional MRAC and Nussbaum function-
based methods, it does not necessitate any additional design conditions or involve any transient performance issues, while still
ensuring closed-loop stability and asymptotic output tracking for any given bounded reference signal. The simulation study
showcases the design procedure and evaluates the efficacy of the proposed control method.
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1 Introduction

The topic of adaptive control has been a prominent
area of research in the control community, possessing
both theoretical and practical significance due to its
powerful capability in effectively handling parametric
uncertainties within systems. In the past few decades,
significant advancements have been made in adaptive

⋆ This work was supported in part by National Key R&D
Program of China under Grant 2018YFA0703800, in part
by the National Natural Science Foundation of China un-
der Grants 62173323, and 62322304, in part by the Beijing
Institute of Technology Research Fund Program for Young
Scholars, and in part by the Foundation under Grant 2019-
JCJQ-ZD-049.
*Corresponding author at: School of Automation, Beijing
Institute of Technology, Beijing 100081, China.

Email addresses: xuyuchun@amss.ac.cn (Yuchun Xu),
yanjun@bit.edu.cn (Yanjun Zhang), jif@iss.ac.cn
(Ji-Feng Zhang).

control, encompassing both linear and nonlinear sys-
tems, leading to a plethora of remarkable achievements
being published (see, for example, Goodwin and Sin
(1984); Sastry and Bodson (1989); Chen and Zhang
(1990); Krstic, Kanellakopoulos, and Kokotovic (1995);
Chen and Guo (1991); Ordonez and Passino (1999);
Marino and Tomei. (1995); Ge et al. (2001); Tao (2014);
Landau et al. (2011); Astrom and Wittenmark (2013);
Ren, Zhao, and Cao (2023); Annaswamy and Fradkov
(2021); Zhang et al. (2023); Liu, Wang, and Li (2024)).

In the field of adaptive control, model reference adap-
tive control (MRAC) is a popular methodology with
its origin dating back to the 1950s and continuing to
be widely studied now. In Kalman (1958), the au-
thor endeavored to address the MRAC problem by
devising an adaptive observer in response to the pres-
ence of unknown plant parameters. However, limited
success was achieved due to the challenge of concur-
rently estimating both states and parameters. Fortu-
nately, the direct controller parameterization intro-
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duced in Astrom and Wittenmark (1973); Monopoli
(1974) represented a significant advancement, which
emphasized the crucial necessity of estimating the con-
troller parameters in order to achieve the objective
of asymptotic output tracking in the MRAC frame-
work. This prompted a majority of researchers to em-
brace this line of thinking and devote themselves to
the development of appropriate parameter estimators.
The readers are advised to consult several textbooks
(Narendra and Annaswamy, 1989; Sastry and Bodson,
1989; Krstic, Kanellakopoulos, and Kokotovic, 1995;
Ioannou and Sun, 1996; Tao, 2003) for further reference.

The design of a globally convergent model reference
adaptive controller in traditional augmented error-
based estimators can be achieved by incorporating
prior sign information of the high-frequency gain
(Ioannou and Sun, 1996; Tao, 2003). We provide an il-
lustrative example to elucidate this matter. Consider
a general class of linear time-invariant (LTI) systems
encompassing both continuous-time and discrete-time
domains: A(D)[y](t) = kpB(D)[u](t), where kp is the
high-frequency gain, y ∈ R and u ∈ R are the system
output and input, respectively, and A(D) and B(D) are
monic pole and zero polynomials, respectively. Particu-
larly, the symbol D, in the continuous-time case, is the
Laplace transform variable or the time differentiation
operator for all t ∈ [0,∞), as the case may be or, in the
discrete-time case, is the z-transform variable or the
time advance operator for all t ∈ {0, 1, 2, . . .}. In the
traditional continuous-time MRAC framework, prior
knowledge of the sign of kp is required. For the discrete-
time MRAC case, it requires not only the sign of kp, but
also an upper bound on |kp|. Such information is cru-
cial for the design of parameter update laws in order to
prevent the occurrence of singularity problems in con-
trol laws. The readers are referred to Ioannou and Sun
(1996); Tao (2003) for further details.

However, the constraints imposed by the prior knowl-
edge of kp largely restrict the application range of the
MRAC technique. The relaxation of the sign informa-
tion of kp poses a long-term fundamental challenge in
the field of adaptive control research. The researchers
have exerted tremendous efforts in addressing this con-
trol problem. In Nussbaum (1983), the author proposed
a controller by introducing a function, referred as Nuss-
baum gain function, to stabilize a class of first-order
continuous-time systems without the sign information of
kp. Since then, the Nussbaum gain function-based adap-
tive control has been extensively investigated (see, for ex-
ample, Lee and Narendra (1986); Ye and Jiang (1998);
Ge and Wang (2003); Yang, Ge, and Lee (2009); Chen
(2019); Wang, Wen, and Guo (2020); Wang and Liu
(2022); Zhang et al. (2023)). Besides, several other nov-
el methods have also been reported to address the issue
of unknown high-frequency gain in the adaptive control.
For example, Kaloust and Qu (1995) designed a nonlin-
ear robust control scheme to identify unknown control

directions online by using bounding functions of un-
known dynamics and achieved arbitrary small ultimate
output tracking error. Lozano, Collado, and Mondie
(1990) proposed a projection based adaptive control
law for continuous-time LTI systems without requiring
a prior knowledge of the high-frequency gain sign infor-
mation but a lower bound on |kp| to ensure asymptotic
tracking performance. Ortega et al. (2019) developed a
dynamic regressor extension and mixing parameter es-
timation technique, and introduced a modified adaptive
controller for multivariable continuous-time LTI system-
s. The proposed method in Ortega et al. (2019) elimi-
nated the prior knowledge of the high-frequency gain
matrix but requiring an interval excitation assumption.
The authors of this paper have also made some efforts
to address the singularity issue of the high-frequency
gain matrix for multivariable nonlinear systems
(Zhang, Zhang, and Liu, 2022; Xu, Zhang, and Zhang,
2023). The well-known backstepping technique, original-
ly proposed in Krstic, Kanellakopoulos, and Kokotovic
(1995), is noteworthy due to its pivotal role in control
design and stability analysis for high-order and nonlin-
ear adaptive control systems.

Recently, Pin, Serrani, and Wang (2022) proposed a
new MRAC method for a special class of continuous-
time LTI systems with relative degree one. The pro-
posed method did not need any information of the
high-frequency gain and achieved asymptotic track-
ing performance based on a Lyapunov function based
analysis. The investigation of systems with arbitrary
relative degrees remains to be conducted, which may
be resolved using a small-gain control design frame-
work similar to that used in adaptive control for
high-order relative degree cases. The readers are re-
ferred to Tao (2003); Sastry and Bodson (1989) for
further information. Nevertheless, the new idea pro-
posed in Pin, Serrani, and Wang (2022) offers a novel
solution to address the challenge of unknown high-
frequency gain in adaptive control. Based on our
previous experience in dealing with the control gain
singularity problem (Zhang, Zhang, and Liu, 2022;
Xu, Zhang, and Zhang, 2023) and motivated by the
new method in Pin, Serrani, and Wang (2022) for
continuous-time LTI systems with relative degree one,
we provide a modified MRAC method for discrete-time
LTI systems with arbitrary relative degrees in this paper.
Note that the control method in Pin, Serrani, and Wang
(2022) addressing the continuous-time systems with rel-
ative degree one is not applicable to control the discrete-
time systems with arbitrary relative degrees due to the
essential differences between the stability characteriza-
tions of the continuous-time and discrete-time systems.
Compared with the existing literature, this paper ad-
dresses the case for a general class of discrete-time LTI
systems, and the proposed method does not require
any prior knowledge of the high-frequency gain or en-
counter the transient performance issues. While, it still
achieves asymptotic output tracking. In summary, the
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main contributions of this paper are as follows:

(i) This paper presents a unified solution to the singu-
larity problem commonly encountered in the adap-
tive control gain issue for a general class of discrete-
time LTI systems with arbitrary relative degrees.

(ii) The traditional discrete-time MRAC framework re-
quires the prior knowledge of both the sign of kp
and an upper bound on |kp|. The proposed control
method presented in this paper completely elimi-
nates the need for any prior knowledge of kp, partic-
ularly without involving any transient performance
issues.

(iii) An output feedback adaptive control law, which is
singularity-free and incorporates a gradient algo-
rithm based parameter update law, is developed.
It does not necessitate any supplementary design
conditions in comparison to the traditional MRAC
framework, yet still guarantees closed-loop stabil-
ity and asymptotic output tracking for any given
bounded reference signal.

The remainder of this paper is organized as follows. The
problem to be addressed is formulated in Section II. The
entire adaptive control design process, including the con-
troller structure, the form of parameter update law, and
the stability analysis, is presented in Section III. The
simulation results are illustrated in Section IV. Finally,
concluding remarks are provided in Section V.

Notations: In this work, we use R to denote the set of
real numbers. We use z and z−1 to denote the time ad-
vance operator and time delay operator, respectively,
i.e., z[x](t) = x(t + 1) and z−1[x](t) = x(t − 1), where

t ∈ {0, 1, 2, 3, ...}, x(t) , x(tT ) for a sampling period
T > 0, and x(t) denotes any signal of any finite dimen-
sion. We also use L∞ and L2 to denote signal spaces de-
fined as L∞ = {x(t) : ||x(·)||∞ < ∞} and L2 = {x(t) :
||x(·)||2 < ∞} with ||x(·)||∞ = supt≥0 max1≤i≤n |xi(t)|
and ||x(·)||2 = (

∑∞
t=0(|x1(t)|2 + · · · + |xn(t)|2)

1
2 , where

x(t) = [x1(t), ..., xn(t)]
T denotes any signal on Rn.

2 Problem statement

This section presents the formulation of the systemmod-
el, control objective, and design conditions. Additional-
ly, it addresses the technical issues to be resolved.

System model. Consider the following discrete-time
LTI system model:

A(z)[y](t) = kpB(z)[u](t), t ≥ 0, (1)

where u(t), y(t) ∈ R are the system input and output,
respectively, A(z) and B(z) are monic polynomials of
degrees n and m, respectively, with unknown constant

coefficients, i.e.,

A(z) = zn + an−1z
n−1 + · · ·+ a1z + a0,

B(z) = zm + bm−1z
m−1 + · · ·+ b1z + b0.

Without loss of generality, we assume that A(z) is un-
stable. Note that n−m > 0 is the relative degree of the
system (1), which reflects the input-output time delay
(Tao, 2003). In this study, the constant high-frequency
gain kp is assumed to be completely unknown except
that it must be non-zero to guarantee the controllability
of system (1).

Control objective. The objective of this paper is to
design an output feedback control input u(t) for the sys-
tem (1) with ai, bj and kp being all unknown such that
the closed-loop system are stable and the system output
y(t) tracks a given reference output y∗(t) ∈ L∞. The ref-
erence output y∗(t) is usually generated by a reference
model system

y∗(t) =
1

Pm(z)
[r](t), (2)

where Pm(z) is a monic and stable polynomial of degree
n−m and r(t) ∈ R is an external reference input signal
such that r(t) ∈ L∞.

Assumptions. To achieve the control objective, the fol-
lowing assumptions are needed.

(A1) The polynomial B(z) is stable.
(A2) The degree n of A(z) is known.

(A3) The relative degree n∗ , n−m > 0 is known.

Assumption (A1) means that all zeros of B(z) are insid-
e the unit circle of the complex z-plane, i.e., the system
(1) is minimum phase. This is because MRAC will can-
cel the zeros of the system (1) and replace them with
those of the reference model to achieve the tracking con-
trol objective. For the sake of stability, such cancella-
tions should occur inside the unit circle of the complex
z-plane. By the way, the polynomial A(z) and B(z) are
not required to be coprime, i.e., we allow common ze-
ros and poles in the transfer function of the system (1).
Assumption (A2) is used to determine the dimension of
the estimated parameter and can be relaxed as an up-
per bound on n is known. Assumption (A3) is devoted
to choose the reference model. With assumption (A3),
Pm(z) in (2) can be chosen as zn

∗
, which is a common

choice in the discrete-time MRAC (Tao, 2003).

Remark 1 The traditional discrete-time MRAC (Tao,
2003) requires an additional assumption regarding the
high-frequency gain kp: an upper bound on |kp| is known,
as well as the sign of kp. In contrast, we assume that kp
is entirely unknown in this study. As a result, the con-
trol design is undertaken without any prior knowledge of
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kp. Actually, kp indicates the control direction and may
be unknown for many control problems in engineering,
for instance, uncalibrated visual servoing and autopilot
design of uncertain ships (Psillakis, 2017). ∇

Technical issues. To meet the control objective, we
will solve the following technical issues in this work: (i)
how to develop an adaptive control law that effectively
addresses the singularity problem, while eliminating the
need for any prior knowledge of kp; (ii) how to ensure
the implementability of the adaptive control law and the
parameter update law in the presence of high-order time-
delay caused by arbitrary relative degrees; and (iii) how
to conduct an analysis on the closed-loop stability and
output tracking, particularly focusing on the asymptotic
convergence of the output tracking error. These concerns
are all addressed in this work.

3 Adaptive control design

In this section, we first develop an adaptive control law
incorporating a gradient algorithm based parameter up-
date law. Following this, we present the principal out-
come of this study and proceed to analyze stability and
tracking performance of the system. By the way, the
reading flow is optimized by presenting some long proofs
in the Appendix.

3.1 Adaptive control law structure

To proceed, we present the following lemma that pro-
vides a fundamental design equation for subsequent con-
trol design of this section.

Lemma 1 (Tao, 2003)There exist constant vectors θ∗1 ∈
Rn−1 and θ∗2 ∈ Rn such that

θ∗T1 ω1(z)A(z) + kpθ
∗T
2 ω2(z)B(z) = A(z)−B(z)zn

∗
, (3)

where

ω1(z)=[z−n+1,..., z−1]T, ω2(z)=[z−n+1,..., z−1, 1]T . (4)

The proof of this lemma can be seen in Tao (2003). Ac-
tually, the equation (3) is the well-known matching e-
quation for the output feedback model reference control
of discrete-time LTI systems (Tao, 2003).

With (3) to hand, we are ready to design the control law.
First, we introduce ρ∗ = kp and θ∗3 = 1

kp
. Define

ω1(t) = ω1(z)[u](t), ω2(t) = ω2(z)[y](t),

ω(t) = [ω1(t), ω2(t), r(t)] ∈ R2n,

θ∗p =
[
θ∗T1 , θ∗T2 , θ∗3

]T ∈ R2n, δ∗p = ρ∗θ∗p ∈ R2n.

Then, the control law in this paper is designed as

u(t) =
1

1 + α(t)ρ(t)

(
θTp (t)ω(t) + α(t)δTp (t)ω(t)

)
, (5)

where θp(t), δp(t), ρ(t) are the estimates of θ∗p, δ
∗
p , ρ

∗,

respectively, with θp(t) =
[
θT1 (t), θ

T
2 (t), θ3(t)

]T
, and

α(t) ∈ R is a gain function which will be determined
later to guarantee 1 + α(t)ρ(t) ̸= 0.

3.2 Tracking error equation

Define the tracking error as e(t) = y(t) − y∗(t). Then,
we give the following lemma to specify a tracking error
equation which plays a crucial role in the design of the
parameter update law and subsequent stability analysis.

Lemma 2 The adaptive control law (5), applied to the
system (1), provides the tracking error equation as

e(t+ n∗) = θ̃T (t)ϕ(t), (6)

where θ̃(t) = θ(t)− θ∗ with

θ∗ =
[
θ∗3 , θ

∗T
p , δ∗Tp , ρ∗

]T ∈ R4n+2, (7)

θ(t) =
[
θ3(t), θ

T
p (t), δ

T
p (t), ρ(t)

]T ∈ R4n+2, (8)

and

ϕ(t) =

[
e(t+ n∗)

θ3(t) + α(t)
,

ω(t)

θ3(t) + α(t)
,

α(t)ω(t)

θ3(t) + α(t)
,

− α(t)u(t)

θ3(t) + α(t)

]T
∈ R4n+2. (9)

Proof. The proof is given in Appendix. 2

From the structure of ϕ(t) in (9), it indicates that the
signal θ3(t)+α(t) cannot be zero. The subsequent anal-
ysis will demonstrate the non-zero nature of θ3(t)+α(t)
by designing the gain function α(t).

3.3 Parameter update law

To design a desired adaptive parameter update law, we
first define an estimation error as

ϵ(t) = e(t) + (θ(t)− θ(t− n∗))Tϕ(t− n∗). (10)

From Assumption (A3) and the definitions of θ(t) in (8)
and ϕ(t) in (9), we see that ϵ(t) is available at the present
moment. With (6) and (10), we derive that

ϵ(t) = θ̃T (t)ϕ(t− n∗), (11)
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which is actually the estimation error equation.

Introducing the quadratic cost function J = 1
2

ϵ2

m2 , where
m = m(t) ia a normalization signal to be defined, we
derive its gradient with respect to θ(t) as

∂J

∂θ
=

ϵ(t)ϕ(t− n∗)

m2(t)
.

Thus, we design the gradient algorithm based parameter
update law for θ(t) as

θ(t+ 1) = θ(t)− Γϵ(t)ϕ(t− n∗)

m2(t)
, (12)

where 0 < Γ = ΓT < 2I4n+2 is the adaptive gain and

m(t) =
√
1 + ϕT (t− n∗)ϕ(t− n∗). (13)

Remark 2 The proposed method in our work deviates
from the traditional MRAC framework which typical-
ly involves a bilinear regression form for the estimation
error equation. The readers are referred to Tao (2003);
Ioannou and Sun (1996) for further details. In our work,
the control law (5) is designed in a manner that prevents
the estimation error equation from taking on a bilinear
form. Actually, the estimation error equation (11) in our
work is of a linear regression form. As a result, we can
directly formulate a gradient algorithm based parameter
update law (12) utilizing the available signals ϵ(t) and
ϕ(t− n∗). This eliminates the requirement for the prior
knowledge of the high-frequency gain kp that is neces-
sary in the traditional MRAC framework. However, the
cost of the proposed control method lies in the dimen-
sion of the estimated parameter vector θ(t) is relatively
high compared with traditional MRAC design scheme.
Despite this, the proposed algorithm is simple to im-
plement and tune since the parameter update law (12)
shares the same adaptation gain Γ. ∇

The subsequent lemma elucidates that the parameter
update law (12) possesses certain desirable properties.

Lemma 3 The parameter update law (12) ensures that

θ(t) ∈ L∞, ϵ(t)
m(t) ∈ L2∩L∞, and θ(t+ i0)− θ(t) ∈ L2 for

any finite integer i0 > 0.

Proof. Consider the following positive definite function:
V (θ̃) = θ̃TΓ−1θ̃. Then, we have

V (θ̃(t+ 1))− V (θ̃(t))

= −
(
2− ϕT (t− n∗)Γϕ(t− n∗)

m2(t)

)
ϵ2(t)

m2(t)
.

Since 0 < Γ = ΓT < 2I4n+2, it follows from the defini-
tion of m(t) in (13) that

V (θ̃(t+ 1))− V (θ̃(t)) ≤ −β
ϵ2(t)

m2(t)

for some constant β > 0. This implies that θ(t) ∈ L∞

and ϵ(t)
m(t) ∈ L2. From (11), we get ϵ(t)

m(t) ∈ L∞. From

(12), we have θ(t+ 1)− θ(t) ∈ L2. Finally, invoking the
inequality

||θ(t+ i0)− θ(t)||2 ≤
i0−1∑
i=0

||θ(t+ i+ 1)− θ(t+ i)||2,

we get θ(t+ i0)−θ(t) ∈ L2 for any finite integer i0. This
completes the proof. 2

3.4 Gain function design for α(t)

To ensure that both the adaptive control law (5) and the
regressor signal ϕ(t) are non-singular, the gain function
α(t) is necessary to guarantee that

1 + α(t)ρ(t) ̸= 0, (14)

θ3(t) + α(t) ̸= 0, (15)

for any possible real value of ρ(t) and θ3(t). To achieve
this objective, we design α(t) as

α(t) =

{
− (|θ3(t)|+ α) , ρ(t) < 0,

|θ3(t)|+ α, ρ(t) ≥ 0,
(16)

where α > 0 can be arbitrary. With this choice of α(t),
we give the following lemma.

Lemma 4 The gain function α(t) designed in (16) en-
sures that (14) and (15) always hold.

Proof. Firstly, we consider the condition (15). When
ρ(t) < 0, we have

θ3(t) + α(t) = θ3(t)− |θ3(t)| − α

=

{
−α, θ3(t) ≥ 0,

2θ3(t)− α, θ3(t) < 0.

Since α > 0, it yields θ3(t) + α(t) < 0 when ρ(t) < 0.
Similarly, when ρ(t) ≥ 0, we have

θ3(t) + α(t) = θ3(t) + |θ3(t)|+ α

=

{
2θ3(t) + α, θ3(t) ≥ 0,

α, θ3(t) < 0.
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This implies that θ3(t) + α(t) > 0 with arbitrary α > 0
when ρ(t) ≥ 0. Thus, (15) holds.

Then, we consider the condition (14). When ρ(t) < 0,
we have

1 + α(t)ρ(t) = 1− (|θ3(t)|+ α) ρ(t)

= 1− |θ3(t)|ρ(t)− αρ(t).

Since ρ(t) < 0, we get 1−|θ3(t)|ρ(t)−αρ(t) > 0 is always
true with arbitrary α > 0. When ρ(t) ≥ 0, we have

1 + α(t)ρ(t) = 1 + (|θ3(t)|+ α) ρ(t)

= 1 + |θ3(t)|ρ(t) + αρ(t).

It follows from α > 0 that 1 + |θ3(t)|ρ(t) + αρ(t) > 0
is always true when ρ(t) ≥ 0. Thus, (14) holds. This
completes the proof. 2

The controller (5) eliminates the need for prior knowl-
edge of kp in the parameter update law (12). However,
the introduction of denominator terms 1 + α(t)ρ(t) and
θ3(t) + α(t) may cause high gain problem during the
adaptive process. To address this issue, we choose α(t)
as defined in (16) to achieve a unified singularity-free de-
sign for both the control law (5) and the parameter up-
date law (12). Lemma 4 demonstrates that 1 + α(t)ρ(t)
and θ3(t)+α(t) are consistently non-zero with α(t) being
designed in (16). As a result, the control law (5) and the
parameter update law (12) are always implementable in
the control process.

3.5 Stability analysis

The analysis for closed-loop system performance is now
underway. The main result of this paper is given in the
following. To optimize the reading flow, the proof of the
main result is placed in Appendix.

Theorem 1 Under Assumptions (A1)-(A3), if the
adaptive control law (5) with the parameter update law
(12) is applied to the system (1), then the closed-loop
system is stable and of asymptotic output tracking, i.e.,
limt→∞(y(t)− y∗(t)) = 0.

Proof. The proof is given in Appendix. 2

So far, we have developed a modified MRAC method
for discrete-time LTI systems with arbitrary relative de-
grees. Notably, the proposed method eliminates both
the sign information of kp and the upper bound on |kp|,
which still achieves asymptotic output tracking.

4 Simulation study

This section provides two examples to showcase the de-
sign process and substantiate the theoretical findings.

4.1 Simulation for systems with n∗ = 1

Simulation model. Consider the following system

As(z)[y](t) = kpsBs(z)[u](t), (17)

where kps = 1, and

As(z) = (z + 1)(z − 2)

(
z +

1

2

)
, (18)

Bs(z) = z

(
z +

1

2

)
. (19)

Form (18) and (19), we see that As(z) is unstable and
Bs(z) is stable. Consequently, the simulation model (17)
is minimum-phase. Moreover, As(z) and Bs(z) have a
common factor z+ 1

2 and the relative degree is one, that
is, n∗ = 1. The reference output signal is chosen as

y∗(t) = 4 sin
1

2
t− 1

3
cos

3

10
t. (20)

10 20 30 40 50 60 70 80 90 100

Time(t)

-20

-15

-10

-5

0

5

10

15

20

y(t)

y*(t)

Fig. 1. Trajectories of the output y(t) and the reference out-
put y∗(t) (n∗ = 1).

10 20 30 40 50 60 70 80 90 100

Time(t)

-40

-30

-20

-10

0

10

20

30

40 u(t)

Fig. 2. Trajectory of the control law u(t) (n∗ = 1).

Control law parameter setting. From (18) and (19),

we calculate θ∗1 and θ∗2 as θ∗1 =
[
0,− 1

2

]T
and θ∗2 =[

−1,−5
2 ,−

1
2

]T
. With ρ∗ = kp and θ∗3 = 1

kp
, we have

ρ∗ = 1 and θ∗3 = 1. With θ∗p = [θ∗T1 , θ∗T2 , θ∗3 ]
T and δ∗p =

ρ∗θ∗p, we derive θ∗p = δ∗p =
[
0,−1

2 ,−1,−5
2 ,−

1
2 , 1
]T

.
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Fig. 3. Trajectories of part of parameters in θ(t) (n∗ = 1).

From (7), we obtain

θ∗ =
[
1, 0,−1

2 ,−1,−5
2 ,−

1
2 , 1, 0,−

1
2 ,−1,−5

2 ,−
1
2 , 1, 1

]T
.

Moreover, ω1(t) and ω2(t) are specified as

ω1(t) = ω1(z)[u](t), ω1(z) = [z−2, z−1]T ,

ω2(t) = ω2(z)[y](t), ω2(z) = [z−2, z−1, 1]T . (21)

Let θ3(t), θp(t), δp(t), ρ(t), θ(t) be the estimates of
θ∗3 , θ

∗
p, δ

∗
p , ρ

∗, θ∗, respectively, with

θp(t) = [θp1(t), θp2(t), θp3(t), θp4(t), θp5(t), θp6(t)] ,

δp(t) = [δp1(t), δp2(t), δp3(t), δp4(t), δp5(t), δp6(t)] .

Then, we get

θ(t) =
[
θ3(t), θ

T
p (t), δ

T
p (t), ρ(t)

]T
. (22)

Choose θ(0)=[1.2, 0.3,−0.6,−1.1,−2.2,−0.8, 1.1,−0.1

−0.4,−1.1,−1.9,−0.4, 1.1, 1.2]
T
, Γ = diag {0.1, 0.1, 0.2,

0.1, 0.2, 0.5, 0.4, 0.5, 0.3, 0.3, 0.8, 0.1, 0.2, 0.1}. Moreover,
choose y(0) = −1 and α = 0.5. Then, we can specify
the control law and the parameter update law by (5)
and (12), respectively.

Simulation figures. The system response for the case
of n∗ = 1 is shown in Figs. 1-3. Fig. 1 presents the out-
put response y(t) versus the reference signal y∗(t). This
figure illustrates that y(t) tracks y∗(t) asymptotically.
Fig. 2 shows the response of the control input u(t). Fig.
3 shows the trajectories of part of parameters in θ(t).
Notably, the proposed control method does not rely on
any type of excitation conditions. Thus, parameter esti-
mations may not converge to corresponding true values.
Nevertheless, this does not affect the realization of the
asymptotic output tracking control objective. In sum-
mary, the simulation results verify the validity of the
proposed control method for systems with n∗ = 1.

4.2 Simulation for systems with n∗ = 2

Simulation model. Consider the same system model
as (17) but withAs(z) = (z+1)(z−2)(z−1), Bs(z) = z.
Moreover, we consider the same reference model as (20).
In this case, the relative degree is two, that is, n∗ = 2.

Control law parameter setting. First, we calculate
θ∗1 and θ∗2 as θ∗1 = [0,−2]T , θ∗2 = [4, 0,−5]T . With θ∗p =

[θ∗T1 , θ∗T2 , θ∗3 ]
T and δ∗p = ρ∗θ∗p, we can get θ∗p = δ∗p =

[0,−2, 4, 0, 5, 1]
T
. Then, it follows from (7) that

θ∗ = [1, 0,−2, 4, 0,−5, 1, 0,−2, 4, 0,−5, 1, 1]
T
.

Moreover, ω1(t) and ω2(t) are the same as (21). θ(t), de-
noted as the estimate of θ∗, is the same as (22). Choose
θ(0)=[1.2, 0.3,−1.6, 4.8, 1.5,−6, 1.4, 0.2,−2.1, 3.6,−0.2,

−5.6, 1.5, 1.1]
T
, Γ = diag {0.2, 0.1, 0.3, 0.4, 0.4, 0.6, 0.2,

0.2, 0.4, 0.4, 0.3, 0.5, 0.2, 0.1}. Moreover, choose y(0) =
−2 and α = 0.5. Similarly, we also can determine the
control law and the parameter update law by (5) and
(12), respectively.

Simulation figures. The system response for the case
of n∗ = 2 is shown in Figs. 4-6. From these figures, we
see that the proposed control method is also valid for
systems with n∗ = 2.
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Fig. 4. Trajectories of the output y(t) and the reference out-
put y∗(t) (n∗ = 2).
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Fig. 6. Trajectories of part of parameters in θ(t) (n∗ = 2).

5 Concluding remarks

In this paper, we present a novel output feedbackMRAC
method for discrete-time LTI systems with arbitrary rel-
ative degrees. This method eliminates the need for the
high-frequency gain assumption and achieves asymptot-
ic output tracking. The proposed control method oper-
ates without the need for Nussbaum gain functions and
eliminates the requirement of using projection operators
to maintain non-singularity of the adaptive control gain.
Furthermore, the convergence of tracking error does not
necessitate any type of excitation conditions. The sim-
ulation study illustrates the control design process and
validate the efficacy of the proposed control strategy.
Several intriguing topics warrants further investigation.
For instance, it is imperative to expand the proposed
scheme to address multi-input and multi-output scenar-
ios. In other words, the challenge lies in tackling the elim-
ination of the assumption regarding the high-frequency
gain matrix. Applying the proposed methodology to in-
direct model reference adaptive control also merits fur-
ther investigation. Moreover, assessing the robustness of
the proposed control algorithm is crucial to expanding
its applicability in practical settings.

Appendix

Proof of Lemma 2. First, we consider that A(z) and
B(z) are coprime. From (3), we have

(θ∗T1 ω1(z)− 1)A(z) = −(θ∗T2 ω2(z)kp + zn
∗
)B(z).

It follows from A(z) and B(z) are coprime that there
exists some polynomialF (z) = −z−m+fn−m−2z

−m−1+
· · ·+ f0z

−n+1, which satisfies the equality

θ∗T1 ω1(z)− 1 = F (z)B(z). (A.1)

Using this result, we have

F (z)A(z) + kpθ
∗T
2 ω2(z) = −zn

∗
. (A.2)

Then, operating both sides of (A.2) on y(t), we have
F (z)A(z)[y](t) + kpθ

∗T
2 ω2(z)[y](t) = −y(t + n∗). Com-

bining the system model (1), we get

kpF (z)B(z)[u](t) + kpθ
∗T
2 ω2(z)[y](t) = −y(t+ n∗).

From (A.1), we have

kp(θ
∗
1ω1(z)− 1)[u](t) + kpθ

∗T
2 ω2(t) = −y(t+ n∗). (A.3)

With the reference model, we have

e(t+ n∗)

= y(t+ n∗)− y∗(t+ n∗)

= kp
(
−θ∗T1 ω1(t)− θ∗T2 ω2(t) + u(t)

)
− r(t)

= ρ∗
(
−θ∗T1 ω1(t)− θ∗T2 ω2(t)− θ∗3r(t) + u(t)

)
= ρ∗

(
−θ∗Tp ω(t) + u(t)

)
. (A.4)

With δ∗p = ρ∗θ∗p, it follows from the equation (A.4) that

e(t+ n∗) = −δ∗Tp ω(t) + ρ∗u(t). (A.5)

Multiplying both sides of (A.5) by θ∗3 = 1
kp
, we obtain

θ∗3e(t+ n∗) = −θ∗Tp ω(t) + u(t). (A.6)

By rearranging the expression (5) , one can get u(t) =
θTp (t)ω(t) +α(t)δTp (t)ω(t)−α(t)ρ(t)u(t). Together with
(A.5), it yields

u(t) = θTp (t)ω(t)− α(t)
(
−δTp (t)ω(t) + ρ(t)u(t)

)
+α(t)e(t+ n∗)− α(t)e(t+ n∗)

= θTp (t)ω(t)− α(t)
(
−δTp (t)ω(t) + ρ(t)u(t)

)
+α(t)

(
−δ∗Tp ω(t) + ρ∗u(t)

)
− α(t)e(t+ n∗)

= θTp (t)ω(t)− α(t)
(
−δ̃Tp (t)ω(t) + ρ̃(t)u(t)

)
−α(t)e(t+ n∗)

= θTp (t)ω(t) + α(t)δ̃Tp (t)ω(t)− α(t)ρ̃(t)u(t)

−α(t)e(t+ n∗), (A.7)

where δ̃p(t) , δp(t)− δ∗p and ρ̃(t) , ρ(t)−ρ∗. Substitut-
ing (A.7) in (A.6), we have

(θ∗3 + α(t))e(t+ n∗)

= θ̃Tp (t)ω(t) + α(t)δ̃Tp (t)ω(t)− α(t)ρ̃(t)u(t),

where θ̃p(t) , θp(t) − θ∗p. Denote θ3(t) as the estimate

of θ∗3 and define θ̃3(t) , θ3(t)− θ∗3 . Then, we obtain the
following expression

(θ3(t) + α(t))e(t+ n∗)
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= θ̃3(t)e(t+ n∗) + θ̃Tp (t)ω(t) + α(t)δ̃Tp (t)ω(t)

−α(t)ρ̃(t)u(t).

Given θ3(t) + α(t) ̸= 0 is always true, we get

e(t+ n∗) = θ̃3(t)
e(t+ n∗)

θ3(t) + α(t)
+ θ̃Tp (t)

ω(t)

θ3(t) + α(t)

+δ̃Tp (t)
α(t)ω(t)

θ3(t) + α(t)
− ρ̃(t)

α(t)u(t)

θ3(t) + α(t)
.

From the definition of θ̃(t) and ϕ(t), we finally get e(t+

n∗) = θ̃T (t)ϕ(t).

When A(z) and B(z) are non-coprime, we rewrite B(z)
as B(z) = B1(z)B2(z) such that B1(z) is of degree n1,
and B2(z) and A(z) are coprime. Then, there exist u-
nique θ̄∗1 ∈ Rn−1−n1 and θ∗2 ∈ Rn such that

zn−1−n1 θ̄∗T1 ω̄1(z)A(z) + kpθ
∗T
2 zn−1ω2(z)B2(z)

= zn−1−n1A(z)− zn−1B2(z)z
n∗

with ω̄1(z) =
[
z−n+n1+1, ..., z−1

]T
. With some manipu-

lations, we have

z−n1 θ̄∗T1 ω̄1(z)A(z) + kpθ
∗T
2 ω2(z)B2(z)

= z−n1A(z)−B2(z)z
n∗
.

Therefore, there exists some polynomial F̄ (z) of the
form F̄ (z) = −z−m+n1 + f̄n∗+n1−2z

−m+n1−1 + ... +
f̄0z

−n+n1+1 such that

F̄ (z)B2(z) = θ̄∗T1 ω̄1(z)− 1.

Let F (z) = z−n1 F̄ (z). Then, we also obtain (A.2). Fol-
lowing the same derivation as above, we also get the
tracking error equation (6). This completes the proof. 2

Proof of Theorem 1. For ω1(t) and ω2(t) in (4), we
define

ϕ̄(t) = [ωT
1 (t), ω

T
2 (t)]

T . (A.8)

From (A.3) and θ∗3 = 1
kp
, we get θ∗T1 ω1(t) + θ∗T2 ω2(t) =

u(t)− θ∗3y(t+ n∗). Combining (1) and (A.8), it yields

ϕ̄(t+ 1) = A∗ϕ̄(t) + b∗y(t+ n∗), (A.9)

where

A∗ =


En−2 0(n−2)×n

θ∗T1 θ∗T2

0(n−1)×(n−1) En−1

A∗T
1 A∗T

2

 ∈ R(2n−1)×(2n−1),

b∗ =

[
b∗1

b∗2

]
∈ R2n−1, b∗1 =


0
...

0

θ∗3

 ∈ Rn−1,

Ei =


0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...

0 0 0 · · · 1

 ∈ Ri×(i+1),

{A∗T
1 ∈ Rn−1, A∗T

2 ∈ Rn, b∗2 ∈ Rn}

=

{
{[z∗T , kp, 0, · · · , 0],−p∗T , [0,· · ·, 0]}, if n∗ > 1,

{z∗T +kpθ
∗T
1 ,−p∗T+kpθ

∗T
2 , [0,· · ·, 0, 1]}, if n∗=1

with p∗ = [a0, ..., an−1]
T ∈ Rn and z∗ = [z0, ..., zm−1]

T ∈
Rm. Consider the dynamic system (A.9). Let the
first variable of ϕ̄(t) be the output of (A.9). Then,
we derive an input-output expression for the system
(A.9) with the virtual input y∗(t + n∗) and the vir-
tual output z−n+1u(t) as zn−1[u](t) = c∗(zI2n−1 −
A∗)−1b∗[y](t + n∗), where c∗ = [1, 0, ..., 0] ∈ R2n−1.
From the system model (1), it yields A(z)zn−1[u](t) =
kpc

∗(zI2n−1 − A∗)−1b∗zn
∗
B(z)[u](t). This implies that

det{zI2n−1 −A∗} = zn+n∗−1B(z), which together with
the Assumption (A1) shows that the eigenvalues of A∗

are all inside the unit circle of the z-complex plane, i.e.,
A∗ is stable. Thus, there exists a nonsingular matrix
P ∗ ∈ C(2n−1)×(2n−1) such that ||P ∗A∗P ∗−1||2 < 1,
where || · ||2 denotes the induced Euclidean matrix nor-
m. With this matrix P ∗, the following vector norm || · ||
in R2n−1 is defined as ||x|| = ||P ∗x||2. Then, it follows
from (10) and (A.9) that

ϕ̄(t+ 1) = A∗ϕ̄(t) + b∗(y∗(t+ n∗) + ϵ(t+ n∗)

−(θ(t+ n∗)− θ(t))Tϕ(t)). (A.10)

Introducing the auxiliary signal

s(t) =

∣∣∣∣ ϵ(t+ n∗)

m(t+ n∗)

∣∣∣∣+ ||θ(t+ n∗)− θ(t)||2. (A.11)

It follows from Lemma 3 that s(t) ∈ L2. From (A.10)
and (A.11), we obtain

||ϕ̄(t+ 1)|| ≤ (a0 + c1s(t))||ϕ̄(t)||+ c2 (A.12)

for some constants a0 ∈ (0, 1), c1 > 0, and c2 > 0. Since
s(t) ∈ L2, we get

t0+j∑
t=t0

s(t) ≤ (j + 1)
1
2

(
t0+j∑
t=t0

s2(t)

) 1
2

≤ c3(j + 1)
1
2
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for any j ≥ 1 and some constant c3 > 0. With this
property, we have

t0+j∏
t=t0

(a0 + c1s(t)) ≤

(
a0 +

c1
j + 1

t0+j∑
t=t0

s(t)

)j+1

≤
(
a0 +

c1c3√
j + 1

)j+1

≤ aj+1
0

(
1 +

c1c3
a0
√
j + 1

)j+1

≤ aj+1
0 e

c1c3
a0

√
j+1,

which implies that limt→∞
∑k

j=1

∏t0+j
t=t0

(a0 + c1s(t)) <

∞. From (A.12), we see that ||ϕ̄(t)|| is bounded. Thus,
||ω(t)|| is bounded. Then, it yields ||ϕ(t)|| is bounded,
which indicates that all closed-loop signals are bounded.

With ϵ(t) = ϵ(t)
m(t)m(t) and m(t) ∈ L∞, we have ϵ(t) ∈

L2. Thus, we conclude limt→∞ ϵ(t) = 0. From Lemma
3, we have θ(t) − θ(t − n∗) ∈ L2, which shows that
limt→∞(θ(t)− θ(t− n∗)) = 0. It follows from (10) that
limt→∞ e(t) = 0. This completes the proof. 2
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