¢ IEEE_
L css

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 9, SEPTEMBER 2024

6341

Differentially Private Distributed Stochastic Optimization with
Time-Varying Sample Sizes

Jimin Wang

Abstract—Differentially private distributed stochastic optimiza-
tion has become a hot topic due to the need for privacy protection
in distributed stochastic optimization. In this article, two-time scale
stochastic approximation-type algorithms for differentially private
distributed stochastic optimization with time-varying sample sizes
are proposed using gradient- and output-perturbation methods.
For both gradient- and output-perturbation cases, the convergence
of the algorithm and differential privacy with a finite cumulative
privacy budget ¢ for an infinite number of iterations are simultane-
ously established, which is substantially different from the existing
works. By a time-varying sample size method, the privacy level is
enhanced, and differential privacy with a finite cumulative privacy
budget ¢ for an infinite number of iterations is established. By
properly choosing a Lyapunov function, the algorithm achieves al-
most sure and mean square convergence even when the added pri-
vacy noise has an increasing variance. Furthermore, we rigorously
provide the mean square convergence rates of the algorithm and
show how the added privacy noise affects the convergence rate
of the algorithm. Finally, numerical examples, including distributed
training on a benchmark machine learning dataset, are presented
to demonstrate the efficiency and advantages of the algorithms.

Index Terms—Convergence rate, differential privacy, distributed
stochastic optimization, privacy-preserving, stochastic approxima-
tion.

I. INTRODUCTION

In recent years, information and artificial intelligence technologies
have been increasingly employed in emerging applications such as
the Internet of Things, cloud-based control systems, smart buildings,
and autonomous vehicles [1]. The ubiquitous employment of such
technologies provides more ways for an adversary to access sensitive
information in practical systems, for example, the locations of residence
and work in traffic monitoring systems [2]; users’ living habits and
customs in the electric vehicle market [3]. As such, privacy has become
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a pivotal concern for modern control systems. So far, some privacy-
preserving approaches have been recently proposed for control systems
relying on homomorphic encryption [4], state decomposition [5], and
adding artificial noise [6], [7]. Among others, differential privacy is
a well-known privacy notion and provides strong privacy guarantees.
Thanks to its powerful features, differential privacy has been widely
used in stochastic optimization [8] and distributed consensus [9], [10].

Distributed (stochastic) optimization has been widely used in various
fields, such as Big Data analytics, finance, and distributed learning [11],
[12], [13], [15], [17]. At present, there are many important techniques to
solve distributed stochastic optimization, such as stochastic approxima-
tion [12], [13], [14], [15] and time-varying sample-size. As a standard
variance reduction technique, time-varying sample-size schemes have
gained increasing research interests and have been widely used to solve
various problems, such as large-scale machine learning [16], stochastic
optimization [17], and stochastic generalized equations [ 18]. In the class
of time-varying sample-size schemes, the true gradient is estimated by
the average of an increasing number of sampled gradients, which can
progressively reduce the variance of the sample-averaged gradients.
In distributed stochastic optimization, sensitive personal information
is frequently embedded in each agent’s sampled gradient. The main
reason is that the sampled gradient contains agent-specific data as
input, and such data are often private in nature. For example, in
smart grid applications, the power consumption data, contained in the
sampled gradient, of each household should be protected from being
revealed to others because it can demonstrate information regarding
the householders (e.g., their activities and even their health conditions
such as whether they are disabled or not). In machine learning appli-
cations, sampled gradients are directly calculated from and embed the
information of sensitive training data. Hence, information regarding the
sampled gradient is considered to be sensitive and should be protected
from being revealed in the process of solving the distributed stochastic
optimization problem.

Privacy-preserving distributed (stochastic) optimization method
has recently been studied, including the inherent privacy protection
method [19], quantization-enabled privacy protection method [20], and
differential privacy method [21], [22], [23], [24], [25], [26], [27]. An
important result that the convergence and differential privacy with a
finite cumulative privacy budget € for an infinite number of iterations
hold simultaneously has been given for distributed optimization in [21],
but this cannot be directly used for distributed stochastic optimization.
Based on the gradient-perturbation mechanism [19] or a stochastic
ternary quantization scheme [20], the privacy protection distributed
stochastic optimization algorithm with only one iteration was proposed,
respectively. Two common methods have been proposed for differ-
ential privacy distributed stochastic optimization, namely, gradient-
perturbation [22], [23], [24], [25] and output-perturbation [22], [26],
[27]. However, the existing method induces a tradeoff between privacy
and accuracy. For the gradient-perturbation case, the mean square
convergence of the proposed algorithm cannot be guaranteed, although
a finite cumulative privacy budget ¢ for an infinite number of iterations
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has been presented in [23], [24], and [25]. For the output-perturbation
case, to guarantee the accuracy of the algorithm, e-differential privacy
was proven only for one iteration, leading to the cumulative privacy loss
of ke after k iterations [22], [26], [27]. To the best of our knowledge,
the convergence of the algorithm and differential privacy with a finite
cumulative privacy budget € for an infinite number of iterations has not
been simultaneously established for distributed stochastic optimization.
This observation naturally motivates the following interesting ques-
tions. 1) How to design the differentially private distributed stochastic
optimization algorithm such that the algorithm protects each agent’s
sensitive information with a finite cumulative privacy budget € and si-
multaneously guarantees convergence? 2) How does the added privacy
noise affect the convergence rate of the algorithm? The current article
mainly aims to answer these two questions.

Two differentially private distributed stochastic optimization algo-
rithms with time-varying sample sizes are proposed in this article. Both
the gradient- and output-perturbation methods are given. The main
contributions of this article are summarized as follows.

1) A differentially private distributed stochastic optimization algo-

rithm with time-varying sample sizes is presented for both output-
and gradient-perturbation cases. By a time-varying sample sizes
method, the convergence of the algorithm and differential privacy
with a finite cumulative privacy budget € for an infinite num-
ber of iterations can be simultaneously established even when
the added privacy noises have an increasing variance. Compared
with [22], [23], and [24], the mean square and almost sure con-
vergence of the algorithm can be guaranteed for both gradient-
and output-perturbation methods. Compared with [20], [22], [23],
[24], [25], [26], and [27], a finite cumulative privacy budget ¢ for
an infinite number of iterations is proven for both gradient- and
output-perturbation methods.
The mean square convergence rate of the algorithm with a two-
time scale stochastic approximation-type step size is provided
by properly selecting a Lyapunov function. Compared with the
existing privacy-preserving distributed stochastic optimization al-
gorithms [19], [20], we present the mean square convergence rate
of the algorithm. Furthermore, compared with [12] and [15], we
give the convergence rate with more general noises.

The rest of this article is organized as follows. Section II introduces
the problem formulation. In Sections III and IV, the privacy and
convergence analyses for differentially private distributed stochastic
optimization with time-varying sample sizes are presented for both
output- and gradient-perturbation cases. Section V provides exam-
ples on distributed parameter estimation problems, and distributed
training over “MNIST” datasets. Finally, Section VI concludes this
article.

Notations: Some standard notations are used throughout this article.
X >0 (X > 0) means that the symmetric matrix X is semipositive
definite (positive definite). 1 stands for the appropriate-dimensional
column vector with all its elements equalling one. R™ and R™*"™
denote the n-dimensional Euclidean space and the set of all m x n
real matrices, respectively. For any w, v € R™, (w,v) denotes the
standard inner product on R™. ||z|| refers to the Euclidean norm of
vector z. I, 0 are an identity matrix and a zero matrix with appropriate
dimensions, respectively. For a differentiable function f(-), V f(w)
denotes the gradient of f(-) at w. The expectation of a random variable
X is represented by E[X]. Given two real-valued functions f(k) and
g(k) defined on N with g(k) being strictly positive for sufficiently
large k, denote f(k) = O(g(k)) if there exist M > 0 and ko > 0 such
that | f (k)| < Mg(k) forany k > ko; f(k) = o(g(k)) if forany e > 0
there exists ko such that | f(k)| < eg(k) for any k > ko. [z] denotes
the smallest integer greater than x for z € R.

2

~

Il. PROBLEM FORMULATION
A. Distributed Stochastic Optimization

Consider the following optimization problems defined over a net-
work, which needs to be distributedly solved by n agents:

min  f(z) = Zfi(l% fi(x) £ Bepnp, [li(x, &)] (1)

zeRd

where x is common for any ¢ € V), but ¢, is a local cost function private
to Agent ¢, and &; is a random variable. D; is the local distribution of
the random variable &;, which usually denotes a data sample in machine
learning. The following assumptions are presented to ensure the well-
posedness of (1).

Assumption 1: Foranyi € V), each function V f; is Lipschitz contin-
uous, i.e., thereexists L; > Osuchthat ||V f;(z) — V f;(y)|| < L;||z —
y||  Va,y € R4 each function f; is u-strongly convex if and only if
fi satisfies (V f;(z) — Vfi(y),z — y) > pllz — y||*> Vz,y € RL.

B. Distributed Subgradient Methods

Distributed subgradient methods for solving the distributed (stochas-
tic) optimization problem were first studied and rigorously analyzed
by [11]. In these algorithms, each agent ¢ iteratively updates its decision
variables z; by combining an average of the states of its neighbors
with a gradient step as follows: z; 11 = Eje/\/i ik — 0kGi(Ti ),
where o, is the time-varying step size corresponding to the influence of
the gradients on the state update rule at each time step. Considering the
randomness in ¢;(x, §;), the gradient g;(x; &) that can be obtained by
each agent ¢ is subject to noises. To reduce the variance of the gradient
observation noise, the time-varying sample sizes are used in [17]. In
this case, the gradient that Agent 7 has for optimization at iteration k is

denoted as % So7k L gi(wik, £L), and vy, is the number of the sampling

gradients used at time k, and £,1 = 1,...,~, represents the realiza-
tions of &;. For the sake of notational simplicity, % S0k gi(@i, €

is abbreviated as g¥. In this article, the following standard assumption
was made about g;(z; x, &}).

Assumption 2: For any fixed [ and x; j, € R, there exists a positive
constant o, such that g; (z; i, £!) satisfies E[g; (z; 1, )] = V fi(zi 1)
and E[]|g, (@i, €) — Vilwi0) 2] < o2.

The communication topology G = (V, &) consists of a nonempty
agentset V = {1,2,...,n} and anedge set E C V x V. A = [a;;] is
the adjacency matrix of G, where a;; > 0 and a;; > 0 if (¢,j) € £
and a;; = 0, otherwise. N; = {j € V, (j, %) € £} denotes the neigh-
borhood of Agent ¢ including itself. G is called connected if, for any
pair of agents (i1,1%;), there exists a path from ¢; to 4; consisting of
edges (’il,iz), (7;27 ’L.3)7 ey (’L'lfl,il).

Assumption 3: The undirected communication topology G is con-
nected, and the adjacency matrix A satisfies the following conditions. 1)
There exists a positive constant 7 such that a;; > nfor j € N;,a;; =0
for j ¢ N;.2) Ais doubly stochastic, namely, 17 A = 17, A1 = 1.

It is considered that the following passive attackers exist in dis-
tributed stochastic optimization that have been widely used in the
existing works [19], [20].

1) Semihonest agents are assumed to follow the specified protocol and
perform the correct computations. However, they may collect all
intermediate and input/output information in an attempt to learn
sensitive information about the other agents.

2) External eavesdroppers are adversaries who steal information
through wiretapping all communication channels and intercepting
exchanged information between agents.
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Due to the information exchange in the abovementioned algorithm,
the potential passive attackers can always collect x; 5, at each time k.
Meanwhile, the attackers know the topology graph (A) and step-size
(a.). Combining all the information, it is easy for the potential passive
attackers to infer the agents’ sampled gradients. In this case, raw data
directly computes the sampled gradients, further leaking the agents’
sensitive information. Therefore, in this article, privacy is defined as
preventing agents’ sampled gradients from being inferable by potential
passive attackers.

C. Differential Privacy

This section presents some preliminaries of differential privacy. In
distributed stochastic optimization algorithms, preserving differential
privacy is equivalent to hiding changes in the samples of the gradient
information. Changes in the samples of the gradient information can be
formally defined by a symmetric binary relation between two datasets
called the adjacency relation. Inspired by [8], the following definition
is given.

Definition 1: (Adjacent relation): Given a positive constant C', two
different samples of the gradients Dy, = {g;(z; x,£!),l=1,2,---},
D)y = {gi(zix, €)' =1,2,---} are said to be adjacent if they
differ in exactly one data sample lo,l; such that Hgi(xi,k,d") —

gi(wi €0)h < C.

Remark 1: The adjacent relation indicates the specific sensitive
information that needs to be protected in this article. From Definition 1,
it follows that D), and D are adjacent if only one data sample lo, [,
satisfies ||g; (x5, £°) — gi(xi,k,ﬁﬁ/")ﬂl < C and the others satisfy
gi (@i ks ) = gi (i, €)1 = 0.

Definition 2 ([2] (Differential privacy)): Givene > 0, arandomized
algorithm A is e-differentially private at the kth iteration if for all
adjacent Dy, and D], and for any subsets of outputs T C Range(.A)
such that P{A(Dy) € T} < eP{A(D},) € T}.

Remark 2: The basic idea of differential privacy is to “perturb”
the exact result before release. In this case, an adversary cannot tell
from the output of Dj, with a high probability that an agent’s sensitive
information has changed or not. The constant £ measures the privacy
level of the randomized algorithm A, i.e., a smaller € implies a better
privacy level.

Problem of interest: This article mainly seeks to develop two privacy-
preserving distributed stochastic optimization algorithms such that each
agent’s sensitive information can be protected to a greater extent, and
the convergence of the algorithm is guaranteed simultaneously.

IIl. DIFFERENTIALLY PRIVATE DISTRIBUTED STOCHASTIC
OPTIMIZATION VIA OUTPUT-PERTURBATION

In this subsection, a differentially private distributed stochastic
optimization algorithm with time-varying sample sizes is presented
via output perturbation. Specifically, in each iteration of Algorithm 1,
rather than its original state, each agent ¢ sends its current noisy state
T, + M 1 to each of its neighbors j € N;, where z; & 18 the estimated
state of Agent 7 at time k, n;;, € R? is temporally and spatially
independent, and each element is the zero-mean Laplace noise with
a variance of 207.

A. Privacy Analysis

This section demonstrates the e-differential privacy of Algorithm 1.
We first derive conditions on the noise variances under which
Algorithm 1 satisfies e-differential privacy for an infinite number of
iterations. A critical quantity determines how much noise should be

Algorithm 1: Differentially Private Distributed Stochastic Opti-
mization With Time-Varying Sample Sizes via Output Perturbation.

Initialization: Set k = 0, z; o € RY is any arbitrary initial
value for any ¢ € V.

Iterate until convergence. Each agent ¢ € V) updates its state as
follows:

Tik+1 = (1= Br)Tik + Br Z i (€56 + 1) — gl
JEN;

(€5

where a, > 0 is the step-size for the gradient step, a new
step-size 0 < [, < 1is introduced that determines the degree
to which information from the neighbors should be weighed,
and n j, is the added privacy noises for Agent j at each time k.

Algorithm 2: Differentially Private Distributed Stochastic Opti-
mization With Time-Varying Sample Sizes via Gradient Perturba-
tion.

Initialization: Set & = 0, z; o € R9 is any arbitrary initial
value for any 7 € V.

Iterate until convergence. Each agent ¢ € V) updates its state as
follows:

Tigt1 = (1= Br) ik + B Z @iy, — k(g5 + 1)

JEN;

added to each iteration for achieving e-differential privacy, referred to
as sensitivity.

Definition 3 ([3] (Sensitivity)): The sensitivity of an output map ¢
at the kth iteration is defined as

Ay = sup

Dy, D} :Adj(Dy, D))

la(Dr) — a(D) -

Remark 3: The sensitivity of an output map g means that a single
sampling gradient can change the magnitude of the output map ¢q. It
should be pointed out that g refers to z; ; for Algorithm 1, and g¥ for
Algorithm 2.

Lemma 1: The sensitivity of Algorithm 1 at the kth iteration satisfies

Cag
b
AL <{ 0
= k-2 k-1 c
1=0 t:l+1(1*5t)%7 k> 1.

Proof: The proof can be found in [30, Lemma 1]. a
Remark 4: Motivated by [22], the time-varying sample-size method
is used to process multiple samples at the same iteration. Most impor-
tantly, the time-varying sample-size method has a great advantage in
guaranteeing differential privacy for Algorithm 1. Observing the proof
of Lemma 1, it is found that parameter % has reduced the sensitivity
of Algorithm 1 and further enhances the privacy protection ability.
Theorem 1: Let C' be any given positive number. If e = Y| %’:,
then Algorithm 1 is e-differentially private for an infinite number of
iterations.
Proof: The proof is similar to [9, Th. 3.5], and thus, is omitted
here. g
Theorem 2: Let oy, = (kalz)‘“ B = (kfﬁ, v = [az(k +
az)?],and o, =b(k+a2)", 0<B<1,0<a<1,v>0,7>0,
O0<ar < ag, asg, asz,b > 0. If one of the following conditions holds:
D=lLa+y—ar <l,a+~v+n>2;
2y f=1l,a+~v—ay1 >1,a1+n>1;

k=1
3)
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H0<pB<la+y—FB+n>1.
Then, Algorithm 1 is differentially private with a finite cumulative
privacy budget e for an infinite number of iterations.
Proof: We only need to prove that cumulative privacy budget € is

finite forall k > 1. When 8 = 1, note that oz, = (k+“;2>a,ﬁk = kj_lw s
Y = [as(k + az)” ] from (3), it follows that:
h2 ko ay CCL]_
Z , k> 1.
t+a2 G,g(l‘i’ag)o""_’Y

For k > 1, from Lemma A.3, it follows that:

((k+a2) @), at+y—a <1
((k+az2) ™™ Ink), a+vy—a =1
((k+az) ), a+vy—a; > 1.

Furthermore, since o, = b(k + a2)”, we have

(Z (k +a2)*‘1*7*’7“> , at+y—a1 <1
k=
(E(k—i—ag) al*”lnk), a+y—a =1
k=

2

(I:;(’C + 02)7‘”7’7) ;

From Lemma A3, when a +v—a; < l,a+~v+n>2o0r a+
vy —a; >1,a; +n>1,wehave e = O(1).
When 0 < 8 < 1, from (3), it follows that:

k-2 k-1 Ca
1
<
- ; ( t+a2) ) az(l + az)o

By using Lemma A.2, we have

A, =0 (}:exp(

ay Ca

. l LA el S— 4

exp(l_ﬁ( + as) )ag(HaQ)m o)

From (4) and Lemma A.1, it follows that:
Ak =0 (exp ( (k‘ + (12)1 B)

1 ay 1—

. k B

e o (125 a7

=0 ((k+az)*7+F).
Further, from Lemma A.3, it follows that when 0 < 8 < 1, we have:

i %: =0 <§:(k3 + aQ)aw-ﬁn)

k=2 k=1

[N

0
E:éﬁz o
k=2 Ok

0

a+vy—a; > 1.

k> 1.

CJ

(k +ap)'” B>

1*ﬁ

O ((k + ag) o r+h=n+1)
= {0(nk),
o(1),

at+y—-B+n<1
aty—=pF+n=1
at+y—B+n>1.

Based on the abovementioned discussion, when = 1, + 7 — a1 <
La+ty+n>2, =lLa+y—ar>Llas+n>1, or 0< <
1, +~ — B +n > 1 holds, cumulative privacy budget ¢ is finite for
an infinite number of iterations. g

Remark 5: Theorem 2 gives a guidance for choosing «, /3, y, and 1) to
achieve the differentially private with a finite cumulative privacy budget
¢ for an infinite number of iterations of Algorithm 1. e-differential
privacy was proven only for one iteration in [20], [22], and [26], leading

to the cumulative privacy loss of ke after k iterations, and hence, the
cumulative privacy budget growing to infinity with time. Therefore, €
for an infinite number of iterations is smaller in this article than the
ones in [20], [22], and [26]. This implies that the algorithm achieves a
better level of privacy protection than the ones therein.

B. Convergence Analysis

To facilitate convergence analysis of Algorithm 1, we de-
fine T = [ml,;ﬁ . ,xn,k}T7 ng = [’I’Ll’k, .. ./fln’k]T, G($k) =
[(gF), ..., (g")]". Let @), € R be the average of x;y, 1k,
respectively, i.e., Tp = 2 30 @i = 2afl, mp =230 ng .
Additionally, we use the following notation W =1 — %llT,
Uy =% — 2, Yy =), — 171 = Waxy. Define c-algebra Fj, =
o{G(z),n;,0 <t < k — 1}. Then, the compact form of (2) can be
rewritten as follows:

Trp41 = (1= Br)xr + BrA(zr + ni) — apG(y). Q)

Since A is doubly stochastic, we have
_ _ _ _ (€97 - k
= (1- 04 . - v 6
Tpy1 = (1 — Br)Tr + Bi(T + M) - ;:1 g; (6)

Before discussing the convergence property of the algorithm, the
following assumption is presented.
Assumption 4: The step sizes oy, Bk, privacy noise parameters oy,

and time-varying sample sizes 7, satisfy the following conditions:
(1-02)2u2Bo }
» 16(6 L2ag+n(1— Uz)uﬁo)(50+1)L2

(1
PO OE<OO Dk Bioi <00 3Tl O'ykﬂk <

00, Y o W < oo0.
Remark 6: Assumption 4 is satisfied for many kinds of step-sizes

and noise parameters. For example, for sufficiently large as, Assump-
tion 4 is satisfied in the form of ay = (k + a2)™%, Br = (k + a2) ™7,
Be(1/21).0n = (k+as)",n < B—1/2 3 = [(k+az)"],y >
0. Especially, when o, and -y, are constants, Assumption 4 becomes the
commonly used two-time scale stochastic approximation step-size [12],
[13].

Next, we provide the mean square and almost sure convergence of
Algorithm 1.

Theorem 3: If Assumptions 14 hold, then Algorithm 1 converges
in mean square and almost surely for any ¢ € V), i.e., there exists
an optimal solution z* such that limy_, E[||z; x — 2*[|*] = 0, and
limy o @i = 2, a8. Vi € V.

Proof: The proof can be found in [30, Th. 3]. O

Next, we show how the added privacy noise affects the convergence
rate of the algorithm.

Theorem 4: If Assumptions 1-3 hold, and «y, = (kf#)a, B =
(kfﬁ,% = [az(k + a2)7],and o, = O((k + a2)"), a1, a2, a3 >
0,0<fB<a<1,0<y0<n< 3‘3272, then the convergence rate
of Algorithm 1 is given as follows. When 0 < a < 1, there holds
When o = 1, there

), where

1)mmk%&<1mnf“*”>

]E[H‘T’b,k - ‘T*H2] = O( (k+u2)min{32b2a—2n,0<*5} )
holds E[[|z; — =*[|*] = ((k+a2)min{al;Llr{ﬁB,SB*Qn*ll*B}
1 is a positive constant in Assumption 1.

Proof: The proof can be found in [30, Th. 4]. O

Remark 7: Inspired by the linear two-time-scale stochastic approx-
imation in [14], the almost sure and mean square convergence of
the algorithm with o, = O((k + a2)"), 0 < 1 < 222 is studied by
properly choosing a Lyapunov function. Based on this, the convergence
rate of the algorithm is given in Theorem 4, and the related results
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are not provided for distributed stochastic optimization even when no
privacy protection is considered. Note that the convergence rate for
distributed optimization with nonvanishing noises is studied in [12] and
[15], where o, = O((k + a2)"), n = 0. Then, the convergence rate
studied in this article is nontrivial and more general than the one in [12]
and [15].

From Theorems 2 and 4, the mean square convergence of Algorithm 1
and differential privacy with a finite cumulative privacy budget ¢ for an
infinite number of iterations can be simultaneously established, which
will be shown in the following corollary.

Corollary 1: Let ay = (kf#)a B = (kfﬁ, Vi = [as(k +
az)"],and o, = b(k + a2)",0 < a; < ag, as,as3,b>0.Ifa+~v—
B+n>1,0<f<a<1,0<~,0<n< %hold,thenthemean
square convergence of Algorithm 1 and differential privacy with a finite
cumulative privacy budget € for an infinite number of iterations are
established simultaneously.

Remark 8: Corollary 1 holds when the added privacy noises have
an increasing variance. For example, when o = 1, 8 = 0.9, v = 1.06,
n=0.35,or a=0.9, 6=0.8, v=1.8, n=0.2, the conditions of
Corollary 1 hold. In this case, the mean square convergence of Algo-
rithm 1 and differential privacy with a finite cumulative privacy budget
¢ for an infinite number of iterations can be established simultaneously.
Note that e-differential privacy is proven only for one iteration, leading
to a cumulative privacy loss of ke after k iterations [20], [22], [24].
Then, Algorithm 1 is superior to the ones in [20], [22], and [24].

Remark 9: Our approach does not contradict the tradeoff between
utility and privacy in the differential-privacy theory. In fact, to achieve
differential privacy, our approach does incur a cost (compromise) on the
utility. However, different from existing approaches that compromise
convergence accuracy to enable differential privacy, our approach com-
promises the convergence rate (which is also a utility metric) instead.
From Theorem 4, it follows that the convergence rate of the algorithm
slows down with the increase of the privacy noise parameters. The
ability to retain convergence accuracy makes our approach suitable for
accuracy-critical scenarios.

IV. DIFFERENTIALLY PRIVATE DISTRIBUTED STOCHASTIC
OPTIMIZATION VIA GRADIENT-PERTURBATION

This section presents a gradient perturbation method for privacy-
preserving distributed stochastic optimization algorithms with time-
varying sample sizes, i.e., Algorithm 2. Different from Algorithm 1,
each agent ¢ updates its state as follows: z; 11 = (1 — Bi)z;, +
B Zje,/\/'i aijTjx — o (g% +ni ), where n;y, € R? is the added
privacy noises for Agent ¢ at each time k, and is temporally and spatially
independent.

A. Privacy Analysis

In Algorithm 2, the privacy noise n; i, is added directly to the gradi-
ent. Then, the sensitivity of Algorithm 2 is Ay = # llgi (i 1, €20 —

gz(xz ka£ )“1 = %
Theorem 5: Let C be any given positive number. If ¢ =

Sy ﬁ, then Algorithm 2 is e-differentially private for an in-
finite number of iterations. Furthermore, if o, = b(k + a2)", v =
[as(k + a2)Y] with n 4+ > 1, as,az,b > 0, then Algorithm 2 is
differentially private with a finite cumulative privacy budget ¢ for an
infinite number of iterations.

Proof: The results can be obtained similar to the proof process
of Theorem 1 with Ay < %, and differential privacy is robust to
postprocessing as shown in [7, Proposition 2.1]. (]

B. Convergence Analysis

For convergence analysis, we need the following assumptions about
the step sizes ay, Bk, privacy noise parameters oy, and time-varying
sample sizes .

Assumption 5: The step sizes oy, B, privacy noise parameters oy,
and time-varying sample sizes v, satisty the following conditions:

2(1 ag) (1-02)2p2Bo }
» 16(6 L2ag+n(1— Uz)uBo)(ﬁ0+1)L2

2
D he Oﬁ:<ooz:k 07k5k<002k 0 Zkk<

003 50 5 < 00, 3okl AR} < 00
Remark 10: For example, for sufﬁ01ently large as, Assumption 5
is satisfied in the form of ay = (k +a2) ™!, B = (k+a2) P, B €
(1/2,1), 01 = (k+a2)",n < (1— B)/2 7 = [(k +az)7],7 > 0.
Next, we provide the mean square and almost sure convergence of
Algorithm 2.
Theorem 6: If Assumptions 1-3 and 5 hold, then Algorithm 2
converges in mean square and almost surely for any ¢ € V.
Proof: The proof can be found in [30, Th. 6]. g
Theorem 7: If Assumptions 1-3 hold, and a; =

1) supy, k<m1n{

Terag Ok =
(kfﬁ)ﬁ,% = [az(k + a2)?] and o, = O((k + a2)"), a1,a2,a3 >
0,0<f<a<l,0<~0<n< min{g7 ang} then the conver-
gence rate of Algorithm 2 is given as follows. When 0 < o < 1,
there holds E[||x; » — z*||?] = O((k.,.az,)min{ﬁl—m,a—ﬁ—%} ). Whena =
1, there holds E[||z; ;. — 2*|*] = O( (k+a2>min{a1ul?i/?ﬁf%yyl*/i*?n) );
where 14 is a positive constant in Assumption 1.

Proof: The proof can be found in [30, Th. 7]. |

Corollary 2: Let o = gilsa, B = (kfﬁ, i = [ag(k +
az)V],andoy, = b(k + a2)",a1,a2,a3,b> 0.Ify+n>1,0< 8 <
@ <1,0<7,0<n<min{2, %~} hold, then the mean square con-
vergence of Algorithm 2 and d1fferent1al privacy with a finite cumulative
privacy budget ¢ for an infinite number of iterations are established
simultaneously.

Remark 11: For example, when we choose o =1, § = 0.6, v =
1.1, and n = 0.1, Corollary 2 holds. Note that the mean square conver-
gence of the proposed algorithm cannot be guaranteed [23], [24]. Then,
Algorithm 2 is superior to the ones in [23] and [24].

C. Oracle Complexity Analysis

Based on Theorem 7, we establish the oracle (sample) complexity for
obtaining an e-optimal solution satisfying E[||z; » — z*||?] < €, where
e > 0 is sufficiently small. The oracle complexity, measured by the
total number of sampled gradients for deriving an e-optimal solution,
is Zk o Ye» where K (€) = ming {k : E[||z; , — z*||?] < €}.

Corollary 3: If Assumptions 1-3 hold, and «y = (kiﬁ’
Br = et v = [as(k+ 1)), and oy = bk + 1), 0 < a; < L,
a3, b>0,8=054+¢a=1—¢v=¢n = ¢, then the oracle com-
plexity of Algorithm 2 is O (e~ 75-7 ).

Proof: The proof can be found in [30, Corollary 3]. a

Remark 12: The increasing sample size schemes can generally be
employed only when sampling is relatively cheap compared to the
communication burden [17] or the main computational step, such as
computing a projection or a prox [18]. As k becomes large, one might
question how one deals with ~;, tending to +oco. This issue does not
arise in machine learning due to e-optimal solution is interested; e.g., if
€ = 1073, then such a scheme requires approximately O(10°) samples
in total from Corollary 3. Such requirements are not terribly onerous
particularly since the computational cost of centralized stochastic gra-
dient descent is O(10°) to achieve the same accuracy as our scheme.
In addition, for the finite sample space, when the samples required by
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Fig. 1. Convergence. (a) Algorithm 1. (b) Algorithm 2.

this scheme are larger than the total samples, the convergence can be
guaranteed by setting the required samples equal to the total samples.

V. EXAMPLE

This section shows the efficiency and advantages of Algorithms 1 and
2 on distributed parameter estimation problems and distributed training
of a convolutional neural network over “MNIST” datasets.

In distributed parameter estimation problems, we consider a network
of n spatially distributed sensors that aim to estimate an unknown
d-dimensional parameter x*. Each sensor ¢ collects a set of scalar
measurements d; ; generated by the following linear regression model
corrupted with noises, d;; = u],x* +n;;, where u;; € R? is the
regression vector accessible to Agent ¢, and n; ; € R is a zero-mean
Gaussian noise. Suppose that u;; and n,; are mutually independent
Gaussian sequences with distributions N(0, R, ;) and N(0,07,),
respectively. Then, the distributed parameter estimation problem can
be modeled as a distributed stochastic quadratic optimization problem,
min Y 7", fi(z), where fi(x) = E[||d;; — u],z|*]. Thus, fi(z) =
(£ —2)"Ry(z —a*) + 07, is convex and Vfi(x) = Ry i(x —
x*). By using the observed regressor u;; and the corresponding
measurement d, ;, the sampled gradient ui,luflx — d; ju,;, satisfies
Assumption 2. Set the vector dimension d = 6 and the true parameter
xr = % Let n = 6; the adjacency matrix of the communication graph
satisfies Assumption 3. In addition, the initial parameter estimates of
these agents are chosen as x; o = [3,1,1,3,3,1]7,i=1,2,3,4,5,6.

21 01 00
1201 00
. . 00 2 000 .
Let each covariance matrix R, ; = 110200 be positive
000 0 20
0 0 0 00 2

definite. Then, each f;(z) is strong convex.

First, we set C' = 0.2, the step size o = 0.5/(k +1)%°, g, =
0.5/(k + 1)°-%, the sample size v, = [(k + 1)'-!], and the privacy
noise parameter o, = (k + 1)%:95. Then, the cumulative privacy bud-
get for an infinite number of iterations is finite with € ~ 0.864. The
estimation error of Algorithm 1 is displayed in Fig. 1(a), showing that
the generated iterations asymptotically converge to the true parameter
x*. Second, we set C' = 0.2, the step size aj, = 0.5/(k + 1)%-8 and
Br = 0.5/(k + 1)°-5, the sample size v, = [(k + 1)!-2], and the pri-
vacy noise parameter oy, = (k + 1)1, Then, the cumulative privacy
budget for an infinite number of iterations is finite with € ~ 0.488. The
estimation error of Algorithm 2 is illustrated in Fig. 1(b), showing that
the generated iterations asymptotically converge to the true parameter
z*. For both algorithms, we show the situation that ¢ is affected by n
and v in Fig. 2. As shown, ¢ decreases with the increase of 7 and ~,
which is consistent with the theoretical analysis.

(a) (b)

Fig. 2.
rithm 2.

Relationship between ¢, n, and ~. (a) Algorithm 1. (b) Algo-

error
b & A b o N » o ®

3

Fig. 3.  Comparison between Algorithm 1 and the existing works. (a)
Convergence accuracy. (b) Privacy level.

oo Algorithm 2
-2
—

error

(@) (b)

Fig. 4. Comparison between Algorithm 2 and the existing works. (a)
Convergence accuracy. (b) Privacy level.

A. Comparison With the Existing Works

The comparison between Algorithm 1 and [22] and [24] is shown
in Fig. 3; the comparison between Algorithm 2 and [23] and [24] is
shown in Fig. 4, respectively. From Fig. 3, the mean square conver-
gence of Algorithm 1 and differential privacy with a finite cumulative
privacy budget ¢ for an infinite number of iterations are established
simultaneously, but the algorithm in [22] and [24] cannot achieve the
above results. From Fig. 4, the mean square convergence of Algorithm 2
and differential privacy with a finite cumulative privacy budget ¢ for
an infinite number of iterations are established simultaneously, but the
algorithmin [23] and [24] cannot achieve the above results. Based on the
above discussions, Algorithms 1 and 2 achieve higher accuracy while
keeping high-level privacy protection compared to [22], [23], and [24].

B. Distributed Training on a Benchmark Machine Learning
Dataset

We evaluate the performance of Algorithm 1 through distributed
training of a convolutional neural network (CNN) using the “MNIST”
dataset. Specifically, five agents collaboratively train a CNN model on a
communication graph, and the adjacency matrix satisfies Assumption 3.
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Fig. 5. Training accuracy of Algorithm 1 using the “MNIST” dataset. (a)
Training accuracy. (b) Comparison.

The “MNIST” dataset is uniformly divided into five pieces, each of
which is sent to an agent. At each iteration, a time-varying batch of
samples is drawn from each agent’s local dataset by the bootstrapping
method. The CNN model has two convolutional layers, and each layer
has 16 and 32 filters, respectively, followed by a max pooling layer.
The Sigmoid function is used as the activation function, and hence
Assumption 1 is satisfied. Then, the output is flattened and sent to
a fully connected layer for ten classes. We set the noise parame-

- 0.01 o _ 0.0l _ __0.01
terso, = (k+2)" ", step-sizes ay, = (k+2)0'76’6k = (a0 ,and

time-varying sample sizes v, = [(k + 2)"**]. The validation accuracy
of 5 agents after 2000 iterations is given in Fig. 5(a). Then, the
comparison of Algorithm 1 and [22] is given in Fig. 5(b). To ensure the
initial conditions, the same noise parameters and communication graph
are used with the step-sizes « = 0.01 and the batch size B = 50. From
Fig. 5(b), it can be seen that the validation accuracy of Algorithm 1 is
over 80% after 2000 iterations, but [22] cannot train the CNN model
well.

VI. CONCLUSION

Two differentially private distributed stochastic optimization algo-
rithms with time-varying sample sizes have been studied in this article.
Both gradient- and output-perturbation methods are employed. By
using two-time scale stochastic approximation-type conditions, the
algorithm converges to the optimal point in an almost sure and mean
square sense and is simultaneously differentially private with a finite
cumulative privacy budget ¢ for an infinite number of iterations. Further-
more, it is shown how the added privacy noise affects the convergence
rate of the algorithm. Finally, numerical examples, including distributed
training over “MNIST” datasets, are provided to verify the efficiency
of the algorithms. In the future, we will consider the privacy-preserving
of other distributed stochastic optimization algorithms, including dis-
tributed alternating direction method of multipliers, distributed gradient
tracking methods and distributed stochastic dual averaging.

APPENDIX A
LEMMAS
LemmaA.1([10]): Foranygivenc, kg > 0,0 <p<1,andg € R,

k exp(c(l+kg)P exp(c(k+kg)P
we have >, péliko)g) ) = O (kpf,k(o)pﬁfé)fl))

Lemma A.2: For 0 < 8 <1, a >0, ko > 0, sufficiently large [,
we have

()

i=l

(z+k0 )‘1 -1
<) \tho )

exp (125 (ko) P = (ko + 1) #) ), B € (0,1

(A.1)

If we further assume that p > 0, then for any v > 0, we have

k «@
a gl _ [+ ko
E(l—HkO + (i+k0)1+p)—o((k+ko> ) (A.2)

Proof: The proof can be found in [30, Lemma A.2]. g

Lemma A.3 ([28]): For the sequence hj, assume that (i) hy is
positive and monotonically increasing; (ii) In Ay, = o(In k). Then, for
real numbers a1, aq, X, and any positive integer p

o O(ghs),  vm<x
P h n
S 1@ L O(hk;g'x’“), pa; =X
=1 i=I+1 it+ay) UHx 3
O (ﬁﬁ) , pay > x.

Lemma A4 ([29]): Let Vi, ug, PBr, (i be nonnegative random
variables. If Y 5 uk < 00, > 5o Br < 00, and E[Vi11|Fp] < (1 +
ug) Vi — Cx + B for all k > 0, then V}, converges almost surely and
> nio Gk < oo almost surely. Here, E[Vj1|F] denotes the condi-
tional mathematical expectation for the given Vg, ..., Vi, ug, ..., ug,
Boy -+ Brs Cos - -+ Cke

Lemma A.5: For a matrix A € R™*"™ with eigenvalues Aq > --- >
An and corresponding nonzero mutually orthogonal eigenvectors

v1,...,0,. Ifavector u € R" is orthogonal to vy, . .., v,,_1 for some
m < n,then ||Au| < A, ljul.
Proof: The proof can be found in [30, Lemma A.5]. [
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